
 

MATH 5061 Riemannian Geometry I
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we begin with the theory of smooth manifolds
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Abstract Manifolds
locally n

Idea n manifolds I open subsets of IR

described by compatible charts into IR

ASSUME n M Hausdorff paracompact topological space

partition of unity
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Def't r An equivalence class of CP atlas on M is called a

differentiable structure of class CP on M

A differential manifold consists of a Hausdorff

paracompact topologicalspace M together with an
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Smooth Maps between manifolds

Let Mm N be smooch manifolds
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Example M E pith submfd and F IR IR smooth

F M M IR is a smooth snap between manifolds
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Locally by IFT in some local word
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Def't f M N embedding
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